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Abstract

In this paper we will Investigate transformations that serve as tools In the design

of new data structures. Specifically, we study general methods for converting

static structures (in which all elements are known before any searches are

performed) to dynamic structures (in which insertions of new elements can be mixed

with searches). We will exhibit three classes of such transformations, each based

on a different counting scheme for representing the integers, and then 'use a

combinatorial model to show the optimality of many of the transformations. Issues

such as online data structures and deletion of elements are also examined. To

demonstrate the applicability of these tools, we will study six new data structures

that have been developed by applying the transformations. .-
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1. Introduction

The design of efficient data structures for searching problems is an Important and

difficult problem. In this paper we will investigate a class of transformations that

aid In the design of such data structures, and illustrate the use of those

transformations by describing a number of new structures that have been designed

by applying the transformations.

Specifically, we will examine transformations that convert static structures

(which are built once-for-all before any queries are asked) into dynamic structures

(in which queris can be mixed with insertions, and perhaps deletions). These

transformations are applicable to a class of problems we call the decomposable

searching problems. The static-to-dynamic transformations discussed in this paper

are only a few of the known transformations on decomposable searching problems; a

complete paper describing all the transformations is currently being prepared

(Bentley and Saxe (1979]). The static-to-dynamic transformations should,

however, serve to illustrate many of the features of other transformations.

In Section 2 we will examine definitions and notations necessary for discussing

the transformations. The transformations are discussed in Section 3, and a proof of

their optimality is given in Section 4. Online data structures and deletion are the

subjects of Sections 5 and 6, and conclusions are offered In Section 7.

2. Definitions and Notation

In this section we will review a number of basic concepts that have to do with

searching problems and give a number of definitions that will be used throughout the

paper. The casual reader may therefore skim most of this section; the only part he

should read In detail is the definition of the decomposable searching problems.

We will use the term searching problem In a fairly restricted sense throughout

this paper. Specifically, we refer to maintaining a set F of objects so that queries

asking the relation of a new object x to set F can be answered quickly. The best
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known example of a query is what we call a Member Query: "is x a member of F?".

If F were a set of reals, we might be interested In the Nearest Neighbor query of

"what is the distance from x to the point in F closest to it?". The general query is

that a question containing a variable of type T1 is asked of a set of elements of

type T2, with an answer that is of type T3. In a Member query, T1 and T2 are the

same, and T3 is boolean. In a Nearest Neighbor query, both Ti and T2 are real, and

T3 is a nonnegative real. In the general case, the query Q can be viewed as a

function mapping a T1 and a set of T21s to a T3, or

Q: T1 x 2 T2 - T3.

Throughout this paper we will identify a searching problem by its query; a solution

to a searching problem is a data structure that allows the query to be answered

quickly.

In this paper we will study data structures for a class of searching problems

called the decomposable searching problems. A searching problem with query

operation 0 is decomposable if there exists an efficiently computable binary

operator 0 satisfying the condition

Q(x,AUB) = O"[Q(xA), Q(x,B)].

(Note that this definition implies that 0 Is both associative and commutative.) For

example, the member searching problem is decomposable because

Member(x,AUB) = v[Member(x,A), Member(x,B)],

and (distance to) nearest neighbor searching is decomposable because

NN(x,AUB) = min(NN(x,A), NN(x,B)].

We will Investigate a number of decomposable searching problems throughout this

paper; a list of many of them can be found in Appendix I. All of the transformations

that we will see later in this paper are applicable for precisely the decomposable

searching problems. They exploit decomposability by partitioning a set into subsets,

and answer a query by computing answers on the subsets and then using the 0

operator to combine those subanswers to yield a solution to the entire problem.

Note that the 03 operator is essential in this strategy.
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There are two subclasses of the decomposable searching problems that will be of

special interest later in the paper. The first subclass consists of those problems

whose 03 operator has a "zero" (or "sticky") element; that Is, there exists some

element z such that for any element x,

O(zx) a z.

For example, false is a zero for A, and true is a zero for V. A second class that will

be of interest consists of the problems for which the 0 operator has an inverse (for

example, if 0 is addition, its inverse is subtraction). We will examine both of these

subclasses of the. general decomposable searching problems In detail later in the

paper.

We will make a distinction between two types of data structures for solving

searching problems. A static structure is built once and then searched many times;

insertions and deletions of elements are not allowed. To describe the performance

of the static structure A we give three functions of N, the number of elements in the

set represented by A:

PA(N) = the preprocessing time required to build A,

QA(N) = the query time required to perform a search in A, and

SA(N) a the storage required to represent A.

(Unless explicitly noted otherwise, throughout this paper we will deal only with

worst-case cost functions.) A second type of data structure is the dynamic

structure. This structure is initially empty, and the three operations available on it

are for inserting a new element, for deleting a current element, and for performing a

search. We analyze the performance of the dynamic structure B by giving the

functions

IB(N) = the insertion time for B,
DB(N) = the deletion time for B,
OB(N) - the query time required to perform a search in B, and
SB(N) = the storage required to represent B.

Later in this paper we will want to "mix apples and oranges" and compare the

-L*r. . .-. .
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performance of the static structure A with that of the dynamic structure B. To

facilitate such comparisons we define the "insertion" time for the static structure A

as

IA(N) = PA(N) / N,

which is the cost of building an N-element structure amortized over the N elements

it represents. Likewise we define the cost of "preprocessing" the dynamic

structure B to be

PB(N) a IB(i).

3. The Transformations

In this section we will investigate transformations that convert a static data

structure for a decomposable searching problem Into a dynamic data structure. We

will restrict ourselves to the special case of dynamic structures that support only

the operations of Inserting a new element and searching to answer a query; we will

return to the issue of deletion in Section 6.

3.1. The Binary Transformation

In this subsection we will examine a static-to-dynamic transformation that Is

based on the binary representation of the integers. We will study the

transformation by first examining its application to the particular problem of nearest

neighbor searching in the plane, and then discussing its more general properties.

In nearest neighbor searching we must organize a set of N points in the plane so

that subsequent queries can tell the distance from the query point x to its nearest

neighbor in the set. Therefore, objects of type Ti and T2 are points in IR2 and

those of type T3 are positive reals. (For ease of discussion we consider only the

problem of finding the distance to the nearest neighbor and not the point realizing

that distance.) Note that nearest neighbor searching is decomposable because it

satisfies
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NN(x,AUB) = min[ NN(x.A), NN(x,B)].

Lipton and Tarjan [1977] have described an elegant static data structure for

nearest neighbor searching (which we will call LT) with performance

PLT(N) = O(N Ig N),

QLT(N) = 0(g N), and

SLT(N) = O(N).

Many applications, however, call for dynamic nearest neighbor searching, and the

Lipton-Tarjan structure does not appear to be suitable for a modification that would

facilitate insertions. We will now investigate a new structure (called DNN for

dynamic nearest neighbor) that uses the Lipton-Tarjan static structure only as a

subroutine, rather than trying to modify the structure. The DNN structure that we

will describe is the best known structure for performing dynamic nearest neighbor

searching in the plane.

The DNN structure will consist of a set of LT's: that is, the elements (points)

currently stored in the DNN will be partitioned into subsets that are themselves

represented by LT's. When there is one element in the DNN, there is an LT

containing that single element. When the second element is Inserted, that LT Is

discarded and a new LT of size two is created. At the arrival of the third element, a

new LT of size one is created. This process continues so that when there are N

elements represented by the DNN, there are LT's corresponding to all of the one bits

in the binary representation of N. For example, when there are 79 elements in the

DNN, there are LT's of size 64, 8, 4, 2 and 1. When the 80-th element Is Inserted,

the four smallest structures are discarded and a new structure of size 16 Is built.

At any time In this process the distance to the nearest neighbor of a query point x

can be found by locating its nearest neighbors in each of the LT's (using the O(Ig N)

algorithm) and taking the minimum of the distances; it Is here that we make essential

use of decomposability.

This scheme is illustrated pictorially in Figure 3.1 by a diagram commonly used to

represent binary counting. The vertical axis in that figure denotes the number of

elements currently in the dynamic structure. Each rectangle (square) represents a
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particular static LT structure; for example, note the four by four square that comes

into existence at time four and is then replaced at time eight. The LT structures in

existence at time T can be found by drawing a horizontal line that Intersects the

vertical axis at T; for example, at time seven there are three structures In

existence -- of sizes four, two and one. We will find later that this type of diagram

(which we call a "history diagram") is a handy way of representing transformations.

8

4

2

Figure 3.1. The binary transform.

It is easy to analyze the performance of the DNN structure given that we know

the performance of the LT structure. Since the LT requires linear storage and the

DNN just partitions its elements into LT's, the DNN will also require linear storage. A

DNN of N elemeots will keep at most lg(N+l) LT's (each of size not greater than N),

so the query time of a DNN is bounded above by lg(N+1) times the cost of querying

an LT. The cost of Inserting an element Into a DNN is more difficult to analyze; note

that while inserting the 1023-rd element is essentially free, the 1024-th element is

very expensive, since a new structure of size 1024 must be built. We will

therefore count the cost of inserting the first N elements Into an Initially empty

structure, which is exactly PDNN(N). We will perform this analysis only for the case

that N = 2J-1 , and discuss later the value of the function for other N. If we have

inserted 2 J-1 elements, then we have built one LT structure of size 2
J-l, two LT

structures of size 2 j,2, and 2 k-1 structures of size 2j
'k. (This is a trivial property

of binary counting.) The total cost of inserting these elements Is therefore

I
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PDNN(2J-1) = I'PLT(2J'I) + 2"PLT(2J- 2 ) + ... + 2J'PLT

For N a power of two we can rewrite this as

PDNN(N-1) = 1"PLT(N/ 2 ) + 2"PLT(N/ 4 ) + ... + (N/2)PLT(l).

We know that PLT(N) = O(N Ig N), which implies that PLT(N) < cN Ig N, for some

positive constant c. Substituting this into the above equation yields

PDNN(N-1) 5 C'[ 1(N/2 19 N/2) + 2'(N/4 Ig N/4) + ... +(N/2)'(1 Ig 1)]
= (cN/2) [ Ig N/2 + Ig N/4 ... + Ig 1]
< (c/2)N Ig2 N
= O(N Ig2 N).

This completes our analysis of tile DNN structure, establishing the following.

New Data Structure 1: (Dynamic Nearest Neighbor)

The DNN structure for dynamic nearest neighbor searching in the plane has

performances

PDNN(N) < PT(N) 'g(N+1) a O(N Ig2 N),

QDNN(N) < QLT(N) lg(N+1) = O(Ig 2 N), and

SDNN(N) < S(N) = O(N).

Note that the cost of doing N pairs of Insert, Query operations In the DNN structure

Is proportional to N Ig2 N; all other known dynamic nearest neighbor structures

require fl(N2 ) time for the task.

The binary transformation that we have just described for nearest neighbor

searching Is applicable to any decomposable searching problem: given a static data

structure for a particular problem, a dynamic structure is achieved by keeping a set

of static structures, each representing a set whose cardinality is a power of two.

Insertion is accomplished by the same technique of binary counting. A query can be

answered by querying all the static structures in existence at the time of the

query, and combining the answers by repeated application of the - operator.

A computer program Implementing the binary transform is sketched In Figure 3.2.

It assumes the existence of a static structure S with operations Query S , BuildS and

Unbuild S (Unbuild S returns the elements currently stored in the structure as a linked
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list)3 . The code implements a dynamic structure D providing routines Init 0 (which

initializes the structure to be empty), Inserto, and QueryD. It implements the binary

strategy by maintaining a one-way infinite array P with the invariant that P~ll is

either empty or contains a static structure of size 21. The variable High is an

integer that is one greater than the last nonempty structure; P[HighJ is always

empty. InitD initializes the structure to have this invariant. QueryD answers a query

by iterating through the structures and combining the answers by the 0 operator.

Insert D can be understood most easily by considering incrementing a binary integer

by one: to do so, we scan from right to left, changing ones to zeros until we come to

the first zero (which we then make a one). An Alphard program very similar to the

code in Figure 3.2 has been given by Bentley and Shaw [1979); they also provide

both a precise specification of the transform and a proof that the program

accomplishes it.

The analysis of the general transformation Is quite similar to the analysis of the

DNN structure. 4 Since at most lg(N+l) static structures exist for an N-element

dynamic structure, if we assume the static query cost is monotone nondecreasing

we have

QD(N) <5 QS(N * Io(N+I).

To analyze the storage and processing costs we need the following definition: a

function F is said to grow at least linearly if for every two positive integers, M and

N, where M < N,
F(M)/M _< F(N)/N.

A consequence of this definition is that if F is a function that grows at least linearly

and A and B are positive integers, then

F(A+B) = A(F(A+B)/(A+B)] + B(F(A+B)/(A+B)] > F(A) + F(B).

3 Throughout this paper we will retrieve a set of T2's from a structure by unbuilding the structure. In some
applications it might be more efficient to store the set along with the structure.

4 1n the analysis of the transformed structure we will count only the costs incurred by operations on the original
structure. Examination of the code in Figure 3.2 shows that the overhead costs for both Insert and Query are a
small constant times Ig N.
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proc lflitD 4

P(0] 4- ; High 4-0

proc lnsertD(X) 4-

S4- (X)
1 4- 0
while P[i] 31 46 do

S 4- S U UnbuildIS(P(iI) ;Pci] 4-0

I i- +1
P(iJ 4 Builds(S)
if i=High then

High 4- High+1; P(HIgh] 4

func QueryD(x) 4-

A +- QueryS(xP[0)
for I +- 1 to High-i do

A +- O)(A, QueryS(x, P[i]))
return A

.~re3.2. Sketch of code for the binary transform.

Since the dynamic structure partitions its elements among static structures without

replication, if the storage cost SS of the static structure grows at least linearly we

have the relation

SD(N)5 SS5(N).

To analyze the processing cost we will first consider the case that N Is a power of

two; the reasoning used in our analysis of DNN shows that

PD(N-l1) = PS(N/2) + 2P5 (N/4) + ... + (N/2)PS(1).

When P5 grows at least linearly, we know that PS(21) 2 2P3 (l) and we can use this

fact inductively to show that

PD(N-l) :5 Ps(N/2) + Ps(N/2) + +. Ps(N/2)
-Ps(N/2) 'Ig N.
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We will now use a less accurate (but more general) analytic technique to

establish the value of PD(N) for N not one less than a power of two. Note that after

N elements have been inserted, any particular element has been in at most Ig(N+1)

distinct static structures. We will now show that for any transform, if every element

has been built into at most k structures, then the static and dynamic processing

costs are related by

PD(N) :5 PS(N) " k.

(This immediately yields the corollary that

P D(N) <5 P S(N) ' 19(N+ 1 )

for the binary transform, for any positive N.) Consider the cost that any particular

element, E, contributes to PD(N). Each time E is built Into a new static structure of

size M, we calt assign it a share of that cost of Ps(M)/M. Because PS grows at

least linearly and M is less than or equal to N, we know that

PS(M)/M _< PsN/N,

and we can therefore assign E this latter cost as an upper bound. Multiplying the

number of distinct elements (N) by the number of times each is built Into a static

structure (less than k) by this cost yields the desired result.

To enable us to speak more precisely about transforms on data structures for

decomposable searching problems, we need the following definition.

Definition 3.1: (Admissible transform)

A transformation on decomposable searching problems is said to be an

admissible (F(N), G(N)) transform if it converts the static structure A to the

dynamic structure B assuming only the property of decomposability, and the

following relations hold between the cost functions:5

5To simplify the anlysis, we will count only the costs of calls to operations on the static structure, and not the
costs of bookkeeping operations nor the cost of combining the results of queries into different static structures.
Careful examination of our algorilhm$ will show that these extra costs add only a small constant factor (which
does not depend on F or G) to the compite times. In most cases, this constant will approach unity as N increases.
Similarly. the only storage we charge to the dynamic structure is that used for storing instances of the static
structure. Again, this is generally the dominant cost.
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OB(N) < OA(N) F(N),
PB(N) _< PA(N) G(N), and
SB(N) < SA(N).

We assume here that OA is monotone nondecreasing and that both PA and SA

grow at least linearly.6

We can now state precisely the fact that the binary transform efficiently

converts a static data structure to a dynamic structure as Theorem 3.1.

Theorem 3.1: (The binary transform)
The binary transform is an admissible (Ig(N+1), Ig(Npl)) transform.

Proof:

Given in the preceding text. QED.

To illustrate some "tricks" available in using the binary transform, let us consider

its application to the member query problem using the data structure of a sorted

array. Precisely, consider the static data structure for member searching that

stores the elements In increasing order in an array (built by sorting the set), and

answers a query by performing a binary search. The analysis of this structure

(which we call SA, for sorted array) shows

PSA = O(N Ig N),
SSA = O(N), and

QSA = 0(g N).

Consider the dynamic member searching structure achieved by applying the binary

transformation to SA: we always maintain a set of sorted arrays, each of size a

power of two. A particularly efficient representation of this structure (which we will

6 For cases where PA' OA' and SA do not satisfy these criteria, we may choose functions P;QA and Sthat (a)
satisfy the criteria and (b) dominate PA, QA1 and SA, respectively. The relations given above will then hold
between the dynamic cost functions and Plx~rs -
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call BL, for binomial list 7 ) is to store these sorted arrays sequentially in one large

array, with the largest sorted segment (which we call a run) leftmost in the array.

Two snapshots of a BL are shown in Figure 3.3; the vertical bars In the figure

separate the runs in the array. By the analysis of SA and the effect of the binary

transform, we can easily describe the complexity of the BL structure as follows

PBL = O(N Ig2 N),
SBL = O(N), and

OBL = O(Ig 2 N).

Note that very little storage is used by a BL: it requires only N array words for the

elements, plus Ig N bits to describe the the cardinality of the represented set.

112 19 23 27 38 41 43 47127 43129I ooo
a.) An 11-element binomial list.

112 19 23 27 38 41 43 47 127 29 36 43 1

b.) After inserting 36.

Fire 3.3. Snapshots of a binomial list.

There is a glaring deficiency in the obvious implementation of this structure: the

obvious insertion routine inserts the 1024-t1l element by ignoring all the structure

currently in the array and re-sorting from scratch. A far superior strategy for any

insertion is to consider the inserted element as a one-element run, and merge that

with the rightmost one-element run giving a two-element run. We then merge that

with its neighbor, giving a four-element run, and so forth. The amount of work In

building a new run In this scheme is linear in the size of the run, and the cost of

inserting N elements is therefore O(N Ig N). We have thus avoided paying the

logarithmic penalty factor inherent in the binary transform by observing that runs

7 This structure was invented for this application by the use of the binary transform. and was then studied in
detail by Bentley. Oetiq. Guihms and Saxe E 1979). The name is taken Porn its similarity t the binomial qeeue data
structure of Vuillemin E 1978].

i.
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can be efficiently merged. 8

We can sometimes avoid paying the transform penalty of a logarithmic slowdown

in cquery time. Specifically, we will consider the average cost of performing a

successful member search in a 1L (that is, a search that finds the element it was

looking for). If we assume that each element in the array is equally likely to be

searched for, then the probability of finding the desired element in the first run Is at

least one-half. Therefore, half the time we need never search the other runs.

Likewise, at least one-half of the remaining times we find the desired element in the

next structure, so the probability of searching the third run is less than one-fourth.

Summing the cost of searching each run times the probability of performing the

search, we find that a successful member search is expected to be at most twice

as expensive in the BL as in the SA.

The arguments that we have just sketched have been given in detail by Bentley,

Detig, Guibas and Saxe (1979], who describe the following data structure.

New Data Structure 2: (Binomial Lists)
The binomial list (BL) structure for dynamic member searching has

performances

PBL(N) = O(N In N),

OBL(N) = 0(g 2 N), and

SBL(N) = O(N).

The linear storage used by this structure consists of exactly N array words

and 0(1Ic N) additional bits, which is minimal.

Bentley, Detig, Guibas and Saxe (1979] have Investigated this structure In detail

and have shown that it is optimal in a certain model of minimum-storage dynamic

member searching. The 8L structure provides an interesting point of comparison

with the minimum-storage structure described by Munro and Suwanda [1979]; this

8 Only constant extra space is required to merge consecutive runs in an array -- see Knuth (1973, Exercise
5.2.4. ia].
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structure performs substantially better than theirs by working in a different model of

computation.

There is yet another circumstance in which the logarithmic cost penalties of

applying the binary transform do not have to be paid: when the original cost

functions are fast growing. Consider, for example, a static data structure with N2

preprocessing time. Our previous analysis shows that for N a power of two, we will

have
PD(N-1) = Ps(N/2) + 2PS(N/4) + ... + (N/2)P(1)

(N/2) 2 + 2(N/4) 2 + ... + (N/2)12

=(N 2 /2) 1 /2 + 1/4 + ... + 1/N]
= O(N 2 ).

Similar analyses show that the logarithmic penalty In processing cost is not Incurred

when the binary transform is applied to any static structure with preprocessing cost

of (N1 +'), for any positive (. Likewise, it can be shown that the logarithmic penalty

in query time will not have to be paid for any static structure with query time of at

least fl(N').

The concludes our study of the binary transform. In the next two subsections we
will see that this transform is but one of many possible ways of converting a static

structure to a dynamic structure, at the cost of penalty factors in the preprocessing

and query costs. As we study the other transforms and their performance, it is

important to keep in mind that the penalty factors need not always be paid. In this

subsection we have seen three ways of avoiding them: by merging structures

Instead of rebuilding them from scratch, by counting the average search time

instead of the worst-case time (this Is appropriate whenever the 3 operator has a

zero element), and by performing separate analyses for fast-growing functions.

3.2. Transformations with Fast Query Time

The binary transform of the last subsection provides us with an example of an

admissible (Ig(N+1), lg(N+ 1)) transform, and we might wonder if we can. do better. In

this subsection we will investigate a class of transforms that have faster query
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times than the binary transform at the cost of slower insertion time. Specifically, we

will see that an admissible (k, (kN) 1 / k) transform exists for any positive integer k.

We will study this transform by first investigating the case k=2, and then move on to

the general case.

We will call the transform for the case k=2 the triangular transform. because It Is

based on the triangular numbers (that is, numbers of the form (n)). The transform Is

illustrated in Figure 3.4. Note that when 5 elements are in the dynamic structure,

there are static structures of size 3 and 2;, when the 6-tb element 13 Inserted,

those structures are destroyed and a new structure of size 6 is created. At any

point in the history of the dynamic structure, there will be at most two static

structures In existence. The insertion algorithm creates a new "large" static

structure at every triangular number; otherwise it inserts an element by unbuilding

the smaller structure and building it into a new structure with one additional element.

A query can be answered by searching the two static structures and combining the

answers by the 0 operator.

15

10

6

3

Figure 3.4. The triangular transform.

The triangular structure is very easy to analyze. Because at most two static

structures exist at any time, the dynamic query cost Is given by

Qo(N) 1 20S(N).

ii
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If we assume that the static storage requirements grow at least linearly, we know

that the dynamic structure does not use more storage. To analyze the Insertion

time, consider the case that a total of (M) elements have been Inserted. It Is easy

to prove by induction that no element has been built Into more than M structures

(the proof is based on the recurrence for the triangular numbers). In general, if N

elements have been inserted, no single element has been built into more than

(2N) 1 /2 static structures. By the arguments in the previous subsection, this Implies

PD(N) S PS(N) (2N) 1 / 2 .

These arguments together establish the following theorem.

Theorem 3.2: (The triangular transform)

The triangular transform is an admissible (2, (2N) 1 /2) transform.

Proof:

Given in the preceding text. QED.

Just as the binary transform Is isomorphic to the binary representation of the

integers, so is the triangular transform isomorphic to a representation of the

integers based on triangular numbers. (This system is called the "binomial number

system" by Knuth (1968, Exercise 1.2.6.56].) Specifically, an integer N is

represented by a pair of integers I and j (with i>j) by the expression

Note that both I and j are less than twice the square root of N; this explains the

processing cost of the transform. The general transform, which we will call the

k-binomial transform, is based on a straightforward generalization of this scheme, In

which an integer is (uniquely) represented as the sum of k binomial coefficients,

whose lower parts are the integers 1 through k. This counting scheme Is illustrated

for the cases k=2 and k=3 in Figure 3.5. Row 15 of the table is interpreted as

follows: in the 2-binomial representation, 15 is the sum of 15 and 0, or (Q) and(f).

In the 3-binomial representation, 15 is the sum of 10, 3 and 2, or (5), (1) and (v).
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Integer (2) (1) Integer (3) (2) (1)
0 = 0+0 1 0 0 = 0+0+0 2 1 0
1= 1+0 2 0 1 = 1+0+0 3 1 0
2 = 1+1 2 1 2= 1+1+0 3 2 0
3 = 3+0 3 0 3= 1+1+1 3 2 1
4 = 3+1 3 1 4= 4+0+0 4 1 0

5 = 3+2 3 2 5= 4+1+0 4 2 0
6 = 6+0 4 0 6= 4+1+1 4 2 1
7 = 6+1 4 1 7= 4+3+0 4 3 0
8 = 6+2 4 2 8 4+3+1 4 3 1
9 = 6+3 4 3 9= 4+3+2 4 3 2

10 = 10+0 5 0 10 = 10+0+0 5 1 0
11 = 10+1 5 1 11 = 10+1+0 5 2 0
12 = 10+2 5 2 12 = 10+1+1 5 2 1
13 = 10+3 5 3 13 a 10+3+0 5 3 0
14 = 10+4 5 4 14 a 10+3+1 5 3 1
15 = 15+0 6 0 15 = 10+3+2 5 3 2
16 = 15+1 6 1 16 = 10+6+0 5 4 0

17 = 15+2 6 2 17 = 10+6+1 5 4 1
18 = 15+3 6 3 18 = 10+6+2 5 4 2
19 z 15+4 6 4 19 = 10+6+3 5 4 3
20 = 15+5 6 5 20 = 20+0+0 6 1 0
21 = 21+0 7 0 21 = 20+1+0 6 2 0
22 = 21+1 7 1 22 = 20+1+1 6 2 1

Figure 3.5. 2-binomial and 3-binomial counting.

With the example of Figure 3.5 as background, we can now describe k-binomial

counting more precisely. We will use an array D(l..k] to store the upper parts of

the binomial coefficients. The invariant of this counting scheme has two parts: first,

the represented Integer is given by

N = J) .. + (D 1 ),

and secondly, each coefficient D[i] satisfies the condition

D[i] > D[i-1J

for 2<56k. We can initialize the array to represent zero by assigning each 0(l] to

have the value i-1; we will also find it handy to assume that the value of D[k+l] is

"Infinity". The code for incrementing an integer by one Is then as follows.
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D[1]- D[1]+1
ik-1

while D[i] D[1l+] do

D(i+1 ]4-D[i+ ]+ 1
D[i] 4- i-1

I 4- i+1

It Is easy to prove by induction that this code correctly implements the above

counting scheme.

It is straightforward to modify the above counting scheme to yield an admissible

transform. To do so we will retain the array D (with the same invariant as above),

and add an array P[1..k] of static structures. The number of elements In P[I] Is

always (DiJ). The code for this k-binomial transform is given In Figure 3.6, and

Figure 3.7 illustrates the 3-binomial transform.

20

10

4

Figu 3.7 The 3-binomial transform.

The correctness of the code can be proven by induction, and its analysis

establishes the following theorem.

Theorem 3.3s (The k-binomial transform)

The k-binomial transform is an admissible (k, (k!N) l /k) transform.
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proc Init 0 ,-

for I - 1 to k do
D[i] i-1; P(i]

D[k+l] - oo

proc InsertD(x) 4-

Dil 1 - D([1]+ 1; S 4- UnbuildS(P[ 1 ) U (x); P[1]I
i1

while D[l] = D(I+ I] do
D[i+ 1 (i+ 1 ] + 1; S .S U Unbuiidr(P[i])

D(1] 4- I-1; P(i] *
14-i+1

P[1] +- Builds(S)

func QuerYD (x) -

A #- Querys(x, P[I])
for I +- 2 to k do

A +- O(A, QueryS(x, P(iQ))
return A

Figure 3.6. Code for the k-binomial transform.

Proof:

Since at most k structures exist at any one time, we have

OD(N) S "S(N) k.

Since the space requirement for the static structure grows at least linearly

with the number of elements, the dynamic structure can be no more expensive.

To bound the processing time of the dynamic structure, we will Investigate the

maximum number of structures into which any element may be built during the

first N insertions. Note that after N insertions, we have

N >: (D~k]) .

>-(D(k]-k+ 1 )k/k!,

implying
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D[k] _S (k!N)lI/k+k- 1.

This, together with the invariant that

D[k] ) D~k- 1] ) ... ) D[I]> 1

implies that each D[i] satisfies

0 -< D[i]-i _ (kN)l /k 1

for 1i_<k. Finally, we note that whenever a structure Is discarded and Its

elements rebuilt into a new structure, the difference between the upper and

lower parts of the binomial coefficient giving the size of the structure

increases by one; that is, a structure of size

()

is always replaced by a structure of size

(r)
or of size

m+2)i+1 I

This Implies that no element is ever built Into more than (k!N) 1 / k static

structures, from which it follows that

PD(N) p5 (N) (k!N)l/k.

QED.

Note that for all positive k, k! 1 /k < k. For large k, Stirling's approximation gives9

k! 1/k - k/e.

To illustrate the application of the binomial transforms, we will consider the

problem of range searching. In this problem, the stored set contains points in a

d-dimensional space, and a query asks for all points with each dimension In a

specified range. (Note that this problem is decomposable with the 0 operator

9w* use ft notation, *A "0 as a horlhand for OIA-B • o(B).
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interpreted as U.1 0 ) Bentley and Maurer [1978] give a structure for static range

searching (SRS) with performances

QSRS(N) = O(Ig N),

PSRS(N):= 0(N1 8 ), and

SSRS(N) O(N )

for any fixed 5 > 0. By choosing, for example, k = r2/4 and 6 = */2, we can apply

the k-binomial transform to achieve the following structure.

New Data Structure 3: (Dynamic Range Searching)

A dynamic range searching (DRS) structure supporting Insertions and queries

for point sets in d-space with performance

QDRS(N) = 0(Ig N),

PDRS(N) = O(N' +), and

SDRS(N) = O(N I +()

can be achieved for any fixed c > 0 and positive integer d.

Stch a structure is useful for range searching in a situation in which the number of

queries Is known to exceed greatly the number of insertions. Specifically, if the

number of insertions in a set of N insertions and queries were known to be O(NP ) for

some p < 1, then this structure would allow the operations to be processed In

O(N Ig N) time. The best performance for this task prior to this structure was

achieved by Lueker (1978]; his structure required O(N Igd N) time.

It Is important to observe that the penalties incurred by the k-binomial transform

need not always be paid. Just as in the binomial transform, they can occasionally be

avoided by merging static structures, by counting the expected query cost, or by

performing separate analyses for fast-growing functions.

l0In order to implement (multiset) union as a constant-time operation, we ask that a query return a tree whose

leaves are the points within the specified tange. Two such trees can be combined in constant time by atlnating a
new root node containing pointers to the two trees.
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3.3. Transformations with Fast Insertion Time

In the last subsection we investigated a set of transforms that only slightly

increase the query time at the cost of greatly increasing the processing time. In

this subsection we will study a class of structures dual to those, which only slightly

Increase the processing time and greatly increase the query time. Specifically, we

will see that there exists an admissible (k(k!N) 1 / k. k) transform for any positive

integer k. As before, we will first investigate the case that k=2, and then t'rn to

the general case.

The dual triangular transform is illustrated pictorially in Figure 3.8(a). At time 9,

there are 6 structures (of sizes 1, 2, 3, 1, 1, and 1); when the 10-th element is

inserted it is combined with the last three structures to create a new static

structure of size 4. In general, when the (2)-th element is inserted, M elements are

combined together to form a static structure of size M; other elements are kept In

singleton structures as they are inserted. Since each element is built into only two

static structures (tie large and the singleton), we know that

PD(N) 2Ps(N).

It is easy to show that at most 2(2N) 1 / 2 static structures exist at any time, so we

have

QD(N) :5 Qs( ' 2(2N)1/2.

These facts together imply the following theorem.

Theorem 3.4: (The dual triangular transform)

The dual triangular transform is an admissible (2(2N) 1 /2, 2) transform.

Proof:

Given in the preceding text. QED.

That this transform is dual to the triangular transform of Subsection 3.2 Is

Intuitively clear from Figure 3.8(a). To make the duality more precise we will study
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(a) The dual triangular transform. (b) The dual 3-binomial transform.

Figure 3.8. Dual binomial transforms.

the dual triangular transform from the viewpoint of the tri angular- number counting

scheme of the last subsection. The history of the dynamic structure is shown In a

tabular form in Figure 3.9. The eighth row shows that when 8 elements are in the

dynamic structure, there are 5 static structures- three "large" structures (of size 1,

2, and 3) and two "small" structures (each of only one element). In general, If the

number In the "large" column is (M), then there are large structures of size

1, 2, 3, ..., M-1. The nuimber In the "small" column gives the number of unit-sized

static structulres. Note that the entries In the number column are Identical to the

2-binomial counting depicted in Figure 3.5. __ _
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Structures Number

Large Small Large Small
() () 0 0

(1) () 1 0
(1) (1) 1 1

(1,2) () 3 0
(1,2) (1) 3 1
(1,2) (1,1) 3 2

(1,2,3) () 6 0
(1,23) (1) 6 1
(1,2,3) (1,1) 6 2

(1,2,3) (1,1,1) 6 3
(1,2,3,4) () 10 0

(1,2,3,4) (1) 10 1
(1,2,3,4) (1,1) 10 2

Figure 3.9. History of the dual triangular transform.

This duality carries through to the k-binomial transform. For the case of the dual

3-binomial transform, each element will be built Into at most three static structures

(which we call small, medium and large). All small structures have exactly one

element, medium structures have an integer number of elements, and large

structures contain a triangular number of elements. At any point in the history of

the transform, each set of existing small, medium and large structures contains

structures of adjacent sizes. The following table shows the history of the dual

3-binomial transform from the insertion of the fourth through the tenth elements; a

history diagram of the dual 3-binomial transform appears in Figure 3.8(b).
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N Structures Populations
Large Med Small Large Med Small

4 (1,3) () () 4 0 0
5 (1,3) (1) () 4 1 0
6 (1,3) (1) (1) 4 1 1
7 (1,3) (1,2) () 4 3 0

8 (1,3) (1,2) (1) 4 3 1

9 (1,3) (1,2) (1,1) 4 3 2

10 (1,3,6) () () 10 0 0

The extension of this strategy from the dual 3-binomial transform to the dual

k-binomial transform is straightforward. The code of Figure 3.6 is modified so that

instead of containing a static structure of (DiJ) elements, P[I] now contains a list

of structures of sizes

.....l) (Di:I)

Note that the sum of the sizes of the structures is (D~i])* This allows us to

establish the following theorem.

Theorem 3.5: (The dual k-binomial transform)

The dual k-binomial transform is an admissible (k(k!N) l k, k) transform.

Proof:

Because each element is built Into at most k static structures, It Is clear that

the processing cost increases by at most a factor of k. The analysis used in

the proof of Theorem 3.3 shows that each of the k classes of structures

contains at most (kN) 1 /k distinct structures at any point. Therefore at most

k(kdN)l/k static structures exist at any time, providing the upper bound on the

query time penalty. QED.

To Illustrate the application of this transformation we will again consider the

problem of range searching in a d-dimensional point set. Bentley and Maurer [1978]

describe a second structure for range searching (which we will call SRS') with

properties
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QSRS,(N) = O(0),
PSRS,(N) = O(N Ig N), and

SSRS,(N) = O(N),

for any fixed S > 0. By choosing, for example, k = [2/4l and = 02, we can apply

the dual k-binomial transform to achieve the following structure.

New Data Structure 4: (Dual Dynamic Range Searching)

A dynamic range searching (DRS') structure supporting Insertions and queries

for point sets in d-space with performance

QDRS,(N) = O(NE),
PDRS,(N) Z O(N Ig N), and

SDRS,(N) = O(N)

can be achieved for any fixed E > 0 and positive integer d.

Note that this structure is appropriate when there are many more Insertions than

queries; it reduces the cost of the computation of certain sequences of N insert and

query operations (analogous to those discussed at the end of Subsection 3.2) from

the O(N Igd N) time required by Lueker's [1978] method to O(N Ig N).

3.4. Summary of the Transformations

In dtis section we have seen a number of different static-to-dynamic

transformations on data structures for decomposable searching problems. We will

now spend just a moment reviewing these transformations. The transformations

themselves are summarlzed in Figure 3.10.

Transformation Query Factor Processing Factor

k-binomial k (k!N) 1/k
Binary lg(N+1) Ig(N+ 1)
Dual k-binomial k(k!N)l /k k

Fgr 3.10. Summary of transformations.
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There are many other transformations besides those that we have already

investigated. A simple way of achieving a new transformation is by isomorphism to a

particular ntimber system (counting scheme). This is illustrated in Figure 3.11 for

the radlx-3 number system (ternary counting). Part (a) of that figure shows tile

ternary transform: each static structure is of size either a power of three or twice a

power of three, and corresponds to either a one or a two In the ternary

representation of the number of elements in the dynamic structure. This transform

is an admissible ([ 003 N1, 2flo( 3 Ni) transform. 1 1 Its dual is shown in part (b) of the

figure; every structure in the dual is of size a power of three, and there are 0, 1 or

2 structures for any power of three, corresponding to the appropriate digit in the

ternary expression or the integer size of the structure. This is an admissible

(2flo93 N1, (103 Ni) transform. This scheme can be extended to radix-k counting to

yield a primary (rlogk Ni, (k-1 )fiogk NI) transform and a dual ((k-i I(logk Ni, [logk N1)

transform. An interesting open problem is to examine other counting schemes (such

as Fibonacci counting) for their properties as transforms.

9 9

3 3

1 IT

(a) The ternary transform. (b) The dual ternary transform.

Figure 3.11. Radix-3 transformations.

It is now easy to state formally the relationship of the primary and dual

transforms derived from a particular counting scheme. In the primary transform,

there Is a single structure corresponding to each digit, whereas In the dual

1 1 This and the following claims about radix-k transforms assume N>1.
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transform each digit corresponds to a set of structures that are the "carries" from

its right neighbor (the units digit is a set of structures of size one).

The transformations of this section together provide a powerful set of tools for

designing new data structures for both particular applications and as a component in

larger algorithms. To design a dynamic structure in a given context, the algorithm

designer first designs a static structure (which Is usually much easier than

designing a dynamic structure), and then applies one of the transformations to

achieve an efficient dynamic structure. Which transformation he uses depends on

the relative efficiency of the static preprocessing and query costs and on the

expected frequency of insertions and queries.

As we mentioned before, the cost penalties of the transformations need not

always be paid. One can often avoid them by merging static structures, by

analyzing the average query time, or by performing separate analyses for

fast-growing cost functions.

4. Lower Bounds on Transformations

Our main goal in this section is to prove the optimality, in a certain sense, of some

of the transformations discussed in Section 3. Our path to this goal will have many

steps, and the reasons for each step might not be clear in advance. To aid the

reader, we now briefly sketch the contents of this section.

In Subsection 4.1 we define the model of computation which we will use

throughout the rest of the section. We also advise the reader that the use of this

model implies certain limitations on the applicability of the results we will obtain. In

Subsections 4.2 through 4.4 we show a method for representing an Initial sequence

of insertions under some transform as a binary tree, and show how the efficiencies

of transformations are related to properties of the corresponding trees. To achieve

the correspondence between transforms and trees, we restrict our attention to a

class of transforms which we call the arboreal transforms. In Subsection 4.5 we

state and solve a recurrence relating the various tree' properties defined In
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Subsection 4.4, and interpret this result as it applies to the k-binomial

transformations. We thein extend the basic result to answe' questions about other

transformations (includilq the binary transformation) in Subsection 4.6. In

Subsection 4.7 we di.cuss the justification of the restriction to arboreal strategies,

and in Subsection 4.8 we return to explore the limitations (implied by our model) of

the preceding results, showing a number of cases in which our "lower bounds" can

be beaten by going outside the model.

4.1. The Model of Computation

The most important assumption of our model is that the transformations under

consideration are not allowed to use any specific knowledge about the original

problem or static structure except for the fact that the problem is decomposable. It

therefore remains plausible for any particular decomposable searching problem, P,

that there exists a dynamic data structure for P having performance better than

that produced by applying any optimal static-to-dynamic transform to any static

structure for P. For example, AVL trees (see Knuth (1073]) provide a dynamic data

structure for member searching with

PAVL = O(N Ig N),

SAVL = O(N), and

QAVL = 0(0 N).

The results of this section imply that no dynamic structure with this efficiency can

be obtained (in the worst case) by applying a general transform to a static

structure for member searching; the efficiency of AVL trees depends on particular

properties of the member searching problem other than decomposability (in

particular, the ability to maintain the structural invariant under rotation),

Our model of computation is that we have three operations, Build, Query, and C3,

whose Inner workings we may not examine. Build works with performance PS to

create static structures. Query works with performance US to search the

structures created by Build. The 0 operator Is guaranteed to have the property

0-(Query(x.Build(A)),Ouery(x,Build(B)) x Query(Build(A U 8))
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The only way to answer a query Is by applying Query one or more times to

structures created by Build and then combining the results using 0. It Is assumed

that PS grows at least linearly and that QS is monotone non-decreasing.

To measure the computation costs (PD and QD) associated with a dynamic

structure, we will charge only for the computation time of calls to Build and Query. It

should be noted that these costs will generally be the dominant parts of the total

costs of the dynamic algorithms. In any case, this approximation is certainly

acceptable for the purpose of establishing lower bounds on the costs of dynamic

algorithms.

Our goal in the search for efficient transformations is to minimize simultaneously

the penalty functions

F(N) = Max 0o(i)/QS(i) and
15i_<N

G(N) = PD(N)/PS(N).

The bulk of this section will be devoted to showing limits on just how far this

process may be carried in the worst case. Our Interpretation of the term "worst

case" in this context Is a bit tricky. We have already mentioned that we may

assume no specific knowledge about the problem or the original static structure

except for decomposability. It is also important to note that we do not allow

ourselves to assume any specific knowledge about the efficiency of the underlying

static struct-a, except that P Is at least linear and 0 is monotone non-decreasing.

(Note, for example, that the improvements in F and G which occur for fast-growing P

and 0 are not examples of worst-case behavior, so there is no contradiction In the

fact that our lower bounds deny the possibility of such Improvements In the general

case.)

The reader may find It helpful to think of the worst case as that in which P Is

linear and 0 is constant, the Intuition being that it is hardest for the dynamic

structure's costs to approach the static structure's costs when the latter are as

small as possible. Since we may not use any specific knowledge about the original
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static problem or data structure, any solution to the dynamic problem must work by

maintaining a collection of static structures. Whenever an element Is Inserted, a

new structure must be created containing that element12 and possibly some other

elements. Also, some existing static structures may be thrown away. When a query

Is made to the dynamic structure, it is necessary to search some set of static

structures which together contain all the elements inserted so far.

For the following analysis, we will place a few restrictions on the nature of the

dynamic structures we will consider. We will return later to the problem of justifying

these restrictions. Our first restriction is as follows:

Restriction 4.1: (Dynamic structures partition elements into static structures)
We assume that at any time there exists exactly one static structure

containing each element which has been inserted so far. That is, the static

structures partition the set of elements represented by the dynamic structure.

With the preceding assumptions in mind, we are now ready to move on to the first

steps of our analysis.

4.2. Computing F and G

We now give some rules for determining the worst-case values of the penalty

functions F and G associated with a particular strategy.

Definitions: (f and g)

Consider the history of a dynamic structure over the course of any number of

insertions starting when the structure is empty. We define f(N) as the
maximum number of static structures existing after one of the first N

insertions. We define g(N) as the sum of the cardinalities of all sets of

elements built into static structures created over the course of the first N

Insertions.

12While we rmy conceivo of sirategios in which new static structures are created by queries into the dynamic
structure, we need not considtr this posshility-for this worst-case analysis, since PS could grow much mar.
rapidly than QS.
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Note that, while the definitions of f and g actually depend on the specific

transform used, the identity of the transform under consideration will always be

clear from context. We may now bound F and G as follows:

Theorem 4.1: (f bounds F)

For any positive integer N, F(N) < f(N).

Proof:

After any of the first N insertions (say the i-th), at most f(N) static structures

exist. To compute the cost of answering a query, we charge precisely for

querying these structures. Since each of these structures has cardinality no

larger than i, and since QS is monotone non-decreasing, the total cost Is at

most f(N)0s(i). QED.

Theorem 4.2: (g/N bounds G)

For any positive integer, N, G(N) < g(N)/N.

Proof:

We note that any static structure built during the first N insertions will have

cardlnality no larger than N. Consider such a structure, S, having cardinallty I.

By the fact that PS grows at least linearly, we may bound the cost of building

S by the inequality
Ps0i) iPS(N)/N

Summing over all static structure, we get
Po(N) ; g(N)Ps(N)/N,

Implying

G(N) = PD(N)/PS(N) 5 g(N)/N.

QED.

By the assumptions- In Subsection 4.1, the preceding bounds are the tightest

possible for the general case. We will therefore concern ourselves henceforth with
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the problem of minimizing f and g rather than F and G.

4.3. Transforming History Diagrams to Trees

The transforms we discussed In Section 3 are all representable by history

diagrams, such *is those in Figures 3.1, 3.4, 3.7, 3.8, and 3.11. It Is not the case,

however, that all transforms are so representable; in order for a static structure to

be represented as a (contiguous) rectangle in a history diagram, it is necessary that

it be built from a set of elements which were inserted consecutively during the

history of the structure. We now impose our second restriction on the class of

dynamic structures to be considered:

Restriction 4.2: (Contiguity of static structures)
We will restrict our attention to transforms whose histories are representable
by history diagrams.

Indeed, we will further restrict our attention to those history diagrams (such as the

ones in Section 3) in which every rectangle reaches to the "diagonal" of the

diagram. We may state this otherwise as

Restriction 4.3: (Eagerness of static structures)
We will restrict our attention to transforms in which each static structure is

built as soon as nil its elements have been inserted, and In which the elements
of nny dilscarded~ static structure are always built into a single new static

structure (along with some additional elements).

Strategies which satisfy Restrictions 4.1, 4.2, and 4.3 will be called arboreal

strategies for a reason that will soon become obvious.

Consider the history diagram for the first N insertions Into a dynamic -structure

which is maintained by an arboreal strategy. Any such diagram Induces a binary

tree, as shown in Figure 4. 1. We may draw this tree by tracing the left and upper

edges of each rectangle in the diagram. The Internal nodes of the tree will thus be

at the upper left corners of the various rectangles; each Internal node of the tree
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corresponds to a (unique) static structure. We will now go on to study some

relationships between the efficiencies of arboreal strategies and properties of their

induced trees.

Ilson(a)l rson(a) 
I

15 a

Irson(a)I.

lson(a)

3

(a) A partial history diagram (b) The induced tree-

Figure 4.1. A history diagram and Its Induced tree.

4.4. Tree Properties and their Relation to Performance

We now introduce some basic vocabulary for discussing properties of binary

trees.

Definitions: (Tree properties)

Let T be a binary tree. Then leaves(T) denotes the set of all leaves of T and
nodes(T) denotes the set of all internal nodes of T. The weight of T, denoted

ITI, is defined as the cardinality of leaves(T). For any Internal node, a, of T the
left and right sons of a are denoted Ison(a) and rson(a), respectively. If a is a
leaf of T, then the right depth of a, written rd(a), is defined as the number of

right branches along the path from the root of T to a. The right height of T,
rh(T), is the maximum right depth of any leaf of T. The right path length of T,

R(T), is defined as the sum of the right depths of all leaves of T. Left depth,

left height, and left path length are defined analogously.
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We will sometimes identify a (not necessarily internal) node, x, of a tree with the

subtree rooted at x. For example, we may write lxi to Indicate the number of

leaves which are descendants of x.

We now make the following observation:

Theorem 4.3: (Alternate characterization of left path length)

Let T be a tree. Then,

L(T) = X 1lson(n)l
n - nodes(T)

Proof:

Consider any leaf, x, of T. We need only note that the left branches along the

path from the root of T to x emanate precisely from those nodes of T whose

left sons contain x. QED.

With this characterization of left path length in mind, we may now relate the trees

induced by arboreal strategies to the penalty functions associated with those

strategies.

Consider the tree in Figure 4.1(b). To each static structure created during the

partial history represented by that tree, there corresponds a right (horizontal In the

diagram) branch whose length (in the diagram) is proportional to the cardinality of

that static structure, Moreover, for any internal node, n, of the tree, the length (In

the diagram) of the right branch from n corresponds precisely to the number of

leaves In the left son of n. By summing over all internal nodes of the tree, we

establish the following result:

Theorem 4.4: (Relation of g to left path length)

Let N be a positive integer and let T be the tree induced from the history

diagram representing the first N insertions Into a dynamic structure maintained

by some arboreal strategy. Then, L(T) = g(N).

Proof:
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Given in the preceding text. QED.

We may also characterize N and f in terms of tree properties:

Theorem 4.5: (Relation of N and f to tree properties)

Let N be a positive integer and let T be the tree induced from the history

diagram representing the first N insertions into a dynamic structure maintained

by some arboreal strategy. Then,

ITI = N + 1 and
rh(T) = f(N).

Proof:

Inspection of Figure 4.1 will reveal that these results are obvious. QED.

The theorems proven so far in this section allow us to address the problem of

"simultaneously minimizing" F and G by investigating a closely related problem about

trees, namely that of "simultaneously minimizing" the right height and left path

length of a tree with a fixed number of nodes. To discuss this more precisely, we

make the following definition:

Definition: (Minimal left path length)

Let n and k be positive integers. We define

Lk(n) = Min {L(T) I T is a tree such that ITI = n and rh(T) < k).

Since the only tree with zero right height is the tree of one node (which also

has zero left path length), we also define

L(1) = 0.

By convention, we will regard Lo(n) as "positive infinity" whenever n>1. A tree

with n leaves, right path length k, and left path length Lk(n) will be called an

economical tree.

In the next few pages, we will invest~gate the behavior of Lk(n) as k and n vary,

and then restate our findings in terms of lower bounds on worst-case penalty
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functions.

4.5. The Behavior of Lk(n)

Consider a binary tree, T, with root node t. Let A and B be the subtrees rooted at

a=lson(t) and b=rson(T), respectively. The weight, right height, and left path length

of T may be recursively computed from properties of A and B by the relations

ITI = IA IBI,
rh(T) = max(rh(A), rh(B)+1), and
L(T) = L(A) + IAI + L(B).

From this, we obtain the following recurrence for Lk(n):

Theorem 4.6% (Recurrence for Lk(n))

Let n and k be any positive integers. Then,

n= 1
Lk(n) = 1-1+Ll(n-1) 2(n) k=1, n>1

Min [Lk(i) + i + Lk-.l(n-i) ]  kWl, n1
Ili_<in-1

Proof:

The results for k=1 follow by considering the unique binary tree of any weight

which has right height _< 1. For the case kW1, we consider a tree, T (with root

t) having weight 1l and height k. Let t be the root of T. And let A and B be

the subtreps rooted at a=lson(t) and b=rson(t), respectively. Then we must

have:

1 < IAI- n,
IAI + IBI = n,
rh(A) k, and :

rh(B) -< k-1.

Moreover, if the left path length of T is to be minimal, the left path lengths of A

and B must be minimal. That is, we must have

L(A) Lk(IAI) and
L(B) =Lk.I(1B).

Li
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These requirements are precisely captured by our recurrence. QED.

We now come to the principal theorem of this section, wherein the behavior of

Lk(n) is precisely characterized in terms of binomial coefficients.

Theorem 4.7: (Characterization of Lk(n))

Let k and m be non-negative integers such that k < m, and let n be a positive

integer satisfying

Then,

Lk(n) = k(rn 1 + (m-k-1)N, [I]

where

Proof:

Our proof will proceed by induction on k and, for each fixed positive value of k,

by induction on n.

Base Step: (k = 0)

In this case, we have

(kM)= (Mk+l).

This implies that n = 1, so tile right hand side of (1] reduces to

0 )+ (m-0-1)(n-Q9)) 0Q + (m-1)(1-1).
=0
-oM= LO(1 )

Inductive Step: (k > 0)
We now must show that the theorem holds for any k>O assuming It holds

for all smniler k. WP proceed by induction on n. In doing this, we must

take note of the interaction between m and n. Since k Is positive, (M)

increases monotonically with m. Thus, the minimum possible value of n Is

(k) = 1, and for any positive value of n, there is at least one possible

value for m (and occasionally there will be two).
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Base Step: (n =I

In this case, we must have mn a k. so the right hand side of [1]
reduces to

k(k. k) + (k-k- 1[-Q) k(0) + 1-l)(1 - I
:0
Lk(l).

Inductive Step: (11 > 1)
We first show that the right hand side of (1] gives an upper bound
on Lk(n). Note that

We now pick a acid b such that

Q- : b :5 (mr~), and

a + b =n.

By Theorem 4.6, we have

Lk(n) :5 Lk(a) + a + Lk- 1 (b)

=k(k~l ) + ((rn-i)-k-1)(A) +

(k-i) + ((rn-i)-(k-1 )-1 )(B)

=k[(k~l)+(Mk1 )) + (m-k-1)(A+B)

k(km1 + (m-k-1)N,

where,

A a a- (n-k

B b - Q1and

N n - ( T ).

This establishes that our expression Is an upper bound on Lk(fl). To

establish that this Is also a lower bound, we must show that no
other way of expressing n as the sum of two positive numbers, a
and b, will give a smaller value for

Lk(a) + a + Lk- 1(b) Il
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To show this, we consider the effect on the value of expression

[111] of increasing or decreasing a by steps of one. 1 3 Suppose we

start with a and b chosen to satisfy (11], and then start

innrmpntinro a and de.crementinn h by staps of 1. So long as a
remains less than () and b remains greater than (Q-1), the effect

of each increment will be to increase Lk(a) + a by

((m-1)-k-1) + 1 = m-k-1 and to decrease Lk-1(b) by

(m-1)-(k-1)-1 = m-k-i, leaving the total value of [111] unchanged. 1 4

However, as soon as either a or b exceeds the stated bound, one or
more of the following things will happen:

1. The incremental growth of Lk(a) will increase while the
incremental shrinkage of Lk.1(b) decreases or remains
the same,

2. The incremental shrinkage of Lk.1(b) will decrease
while the incremental growth of Lk(a) increases or
remains the same, or

3. b will diminish to 0.

In any case, a smaller value for (111] will not be obtained. Similarly,

If we start with a and b as in [11] and decrease the value of a while

increasing b, then we will have zero or more steps at which [III]

remains unchanged, zero or more steps where the increase in

Lk- 1 (b) exceeds the decrease in Lk(a) + a, and finally the step at

which a diminishes to zero. Thus, the rules given In (11] give an

optimal partitioning of n into a and b. This completes the induction

step and the proof.

QED.

13 1n the following, we assume that k ) 1. If k a 1 we must always take b a I (and a x n-1), since only then is
Lo(b) defined.

14 The incremental changes given hero are found by substitution into the second lem of the riot hand side of

[I], WXe the induction hypothesis.
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The use of the auxiliary variable, m, in expression (I] makes it a bit difficult to

grasp intuitively what is being said about the effects of n and k on Lk(n). To make

the picture clearer, we will briefly study the asymptotic behavior of Lk(n) as k

remains fixed and n grows without bound. Consider first what happens as n ranges

only over binomial coefficients of the form (m). We note that

n(m) * m-k+1 _< (n/k!) 1 / k _- M.

So,

Lk(n) = k(km 1

=kn(m-k)/(k+1)
"[k/(k +l1)]k! 1/ n 1+1

Since the growth of Lk(n) is very well behaved, 1 5 the preceding may be extended

to cover all values of n.

Theorem 4.8: (Asymptotic behavior of Lk(n))

Let k be any positive integer. Then,

Lk(n) - [k/(k+l)jk!(1/k)n1 1/k

Proof:

The result follows directly from the preceding text. QED.

By precisely characterizing Lk(n), Theorem 4.7 gives us a bound on the

efficiencies of arboreal static-to-dynamic transforms. Any such strategy which has

f(N) :5 k for all N must always have g(N) Z Lk(N+ 1). The asymptotic behavior of Lk(n)

given by Theorem 4.8, and our knowledge that Theorems 4.1 and 4.2 are the best

possible within our model, tell us that whenever we have

F(N) ( k

1 5 Given the values where n is of the form "m choose k". we can find the gact values at all other n by linear
interpolation.
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for any positive integer k, we must also have
G(N) >: Lk(N+1)/N - (kN) / k

This is the precisely behavior achieved by the k-binomial transforms, up to lower

order terms. Note, however, that the exact lower bound is not always achievable.

The reason for this is the consideration of Immutability of history. If we know in

advance that there will be exactly N insertions, then an optimal strategy can be

devised by working backwards from an economical tree of weight NO1 and right

height k. But if the total number of insertions to be made turns out to be larger,

then a different strategy for the first N insertions may have been called for.

Fortunately, the results of this restriction turn out not to be too severe, since the

k-binomial strategies have efficiency very close to this theoretical limit. The

following theorem shows that, for any k, the G(N) achieved by the k-binomial

transform is optimal (for F(N) < k) not only to within lower order terms but actually to

within an addive constant of 1.

Theorem 4.9: (Optimality of k-binomial transforms)
For any positive integer, k, the k-binomial transform achieves

f(N) S k and
g(N) < Lk(N+1) + N

for all positive N.

Proof:
Examination of the optimal construction given In the proof of Theorem 4.7

shows that the k-binomial strategy achieves the optimal value of

f(N) = Lk(N+l)

when N is of the form

N = () - 1

for some mtk. For Intermediate values of N, we need only note that, after the

first N insertions under the k-binomial strategy, the sum of the cardinalitles of

all structures formed so far except those In existence after the N-th Insertion

(note that these latter must have a total cardinality of N) will never be greater

U
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than Lk(n). This fact may be established by induction on k, using the fact that
values of Lk(n) are given exactly by linear interpolation between points at

which the k-binomial transform gives absolutely minimal values of f(N). QED.

4.6. Allowing the Number of Static Structures to Grow

So far in this section we have only considered minimizing g(N) where f(N) is

bounded by a constant. In other words, we have considered only strategies which

allow some fixed maximum number of static structures to exist at one time. In

Section 3, however, we also investigated strategies (the binary and the dual

k-binomial transforms) which allow the the number of static structures to grow

without limit as the total number of elements in the dynamic structure Increases.

We will now, therefore, briefly investigate transforms which allow f(n) to grow

without bound.

To study the efficiency of transforms in which f(N) Is unbounded, we may

consider the behavior of Lk(n), where k is allowed to vary with n.1 6 We must be

aware of two possible consequences of allowing k to grow:

(1) For any particular k, n may never grow large enough for Lk(n) to
approach the asymptotic behavior given by Theorem 4.9.

(2) Our previous caveat about tie immutability of history may become more

significant.

Since the asyirtotic approach of Lk() / [k/(k+l)]kI 1 1knl+l/k to unity (as n grows

and k remains constant) is from below, (1) may be ignored for the purpose of

investigating upper bounds. Since the immutability of history can never make It

easier to devise efficient transforms, this consideration may be ignored for the

investigation of lower bounds. Because of these complicating factors, our results

for transforms with unbounded f are less precise than those for bounded f. A few

1 6 1n accordance with the notational conventions of this section, we have k a f(n) 2 f(N+11), since the first N
insertions always give a history diagram which induces a tree of weight N+1.
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results are nonetheless worth noting. The first of these is the following.

Theorem 4.1Oa: (Optimality of the binary transform)

For any arboreal transform such that f(N) a O(Ig N), g(N) = 11(N Ig N).

Proof:

Since constraining the growth of f can only increase and never decrease the

necessary growth of g, we need only consider the case where f(N) = 9(Ig N).
We must show that Lf(N)(N+I) = f(N Ig N). We define the function M by

M(n,k) = Max (m I(m) < n).

From the fact that f(N) = e(ig N), it follows that M(N,f(N)) - f(n) = O(Ig N). This

gives us

g(N) > Lf(N)(N+I)
>Lf(N)(N)

= [f(N)/(f(N)-1 )][M(N,f(N))-f(N)]N

= G(N Ig N) = (N Ig N).

QED.

This result tells us that the binary transform Is optimal In the sense that any

transform that pays as small a penalty in search cost (within a constant factor)

must pay at least as large a penalty in Insertion (again within a constant factor);

any arboreal transform which achieves F(N) = O(g N) In the worst case must also

pay G(N) = fl(Ig N). 1 7 The binary transform Is also optimal in the sense that any

transform which is actually cheaper (by more than a constant factor) for searches

must be strictly more expensive (again by more than a constant factor) for

insertions. We state this result more formally In the following theorem.

Theorem 4.10b: (Optimality of the binary transform)

17This follows from the fact that Theorems 4.1 and 4.2 are the tightest results possible within our model.
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For any arboreal transform such that t(N) = o(Ig N), g(N) = w(N Ig N).

Proof:

Let the function h be defined by

h(N) = (Ig N)/f(N).

From the hypothesis that f(N) = o(lg N), it follows that h(N) = c(1). Moreover,

since M(N,f(N)) _< Ig N, we have f(N) = o(M(N,f(N)), which means that the

approximation in Theorem 4.8 remains valid. 18 This gives us

g(N) _ Lf(N)(N+l)
't Lf(N)(N)

[f(N)/(f(N)+ 1 )]f(N)! 1/f(N)N 1 + 1 /f(N)

S[1 )(f(N)/e)NI/f(N)N

z ((Ig N)/(e h(N))2hl(N)N

= W(N Ig N).

OED.

This implies that any arboreal transform which achieves F(N) o(Ig N) in the worst

case must also pay G(N) = w(Ig N).

In the preceding proof, we saw that the approximation given in Theorem 4.8 still

serves to provide a lower bound on the growth of g even when f is allowed to grow

without bound, provided that f(N) = o(Ig N). The next natural question Is whether

this bound can always be achieved. It turns out that this Is not always possible. If

f grows in a very irregular manner, having sudden spurts of growth separated by

intervals of almost no change, then the immutability of history will cause g(N) to be

much larger than Lf(N+1)(N+I) for values of N immediately following the sudden

increases. If f grows "smoothly" (the precise meaning of this term is Implicit In the

following theorem), however, this lower bound for g(N) is very nearly obtainable. We

state this result formally as follows.

18 That is, consid ,tn () may be diseqaTded.
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Theorem 4.11 (Optimizing g for slowly growing f)

Let h be a differentiable function such that

h(x) w(1) and

h'(x) = o(1/x).

Then, there exists a transform having

f(N) _ rh(N)l and [I]
g(N) - (h(N)/e)N 1 +/h(N). [11]

Moreover, given [I], [11] is optimal up to lower order terms.

Proof:

A structure having the performance described may be formed by a process of

"cutting and pasting" from the history diagrams of the various k-binomial

strategies. We omit the details for brevity and for the sake of keeping the

reader awake. The optimality of [11], given [I], is implicit in the proof of

Theorem 4.1 Ob. QED.

Our results for transforms in which f(N) = (Ig N) are much less complete. In

particular, we know that the performance of the dual k-binomial transforms falls

substantially short of the bound given by the inequality
g(N) : Lf(N)(N I).

We conjecture that this is an inevitable penalty of the Immutability of history, and

that the dual binomial transforms are in fact optimal In some strong sense, similar to

that of Theorem 4.9 for the ordinary binomial transforms. The problem of finding

optimal transforms in which f(N) grows faster than Ig N but slower than n4 for any

positive ( remains open.19

1We may view equivalently view this as the problem of optimizing when g(N) grows asymptotailly faster
than N but slower than N Ig N.



3 September 1979 Static-to-Dynamic Transforms - 47 -

4.7. Justification of the Restriction to Arboreal Transforms

In Subsections 4.1 and 4.3, we Introduced three restrictions which together

constrained our investigation to arboreal transforms. While we conjecture that

arboreal strategies are optimal, in the sense that for any non-arboreal transform

there exists an arboreal transform which is at least as good (given the "black box"

model described in Subsection 4.1), we have not yet found a rigorous proof. In this

subsection, we will summarize our reasons for considering each of the restrictions

reasonable.

Restriction 4.1 forbids the existence of multiple structures containing the same

element. Our intuition is that any strategy which permits such overlapping

structures can be improved by omitting the shared elements from all but one of the

overlapping structures. To justify this intuition would require careful examination of

the consequences of this omission when that one structure is finally destroyed. We

may also forbid overlapping structures on the grounds that transformations which

allow them cannot be optimal for space in the worst case. An even more serious

objection is that there are a number of problems which satisfy the definition of

decomposability only when the unions involved are of disjoint sets.

Our Intuitive justification for Restriction 4.2 (contiguity of static structures) is the

belief that a partial history which does not satisfy this restriction can be turned into

one that does, at no cost in f(N) or g(N), by a kind of "permutation of the names of

the elements." To show this would justify the restriction at least for the cases

where f is bounded or grows slowly and smoothly, so that the immutability of history

is not a significant problem.

For Restriction 4.3, we can actually give a rigorous justification, at least over the

class of transforms which already satisfy Restrictions 4.1 and 4.2. We express this

In the following theorem:

Theorem 4.12: (Optimality of eager strategies)

Let N be a positive Integer. For any partial history consisting of the first N
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insertions and satisfying Restrictions 4.1 and 4.2, there exist a partial history

which also satisfies Restriction 4.3 and which has f(N) and g(N) no greater

than those for the original partial history.

Proof:

Any partial history which satisfies the first two restrictions may be

represented by a history diagram. We may insure that the rectangle in the

upper left corner of the diagram represents a structure which is formed as

soon as all its elements become available, for any diagram which does not have

this property can be transformed at no cost into one that does. The

construction is as follows:

Let n be the upper left rectangle in the diagram. Consider the leftmost

rectangle immediately below R. If it is wider than R, then we extend it

upwards to the top of the diagram, obliterating R; if it is narrower than R,

then we extend R downwards by one step. This process is repeated

until ile property holds.

But now the rest of the diagram (excluding the upper-left rectangle) must

consist of zero, one, or two staircase-shaped pieces to which the same

process may be applied recursively, finally yielding a diagram satisfying

Restriction 4.3. No step in this process increases either the total

preprocessing cost or the maximum number of simultaneously existing

structures, so Restriction 4.3 has been formally justified. QED.

4.8. Limitations on the Significance of the Lower Bounds

The lower bounds we have derived in this section are based on the model of

computation given in Subsection 4.1. Before concluding the section, we will mention

some of the limitations which this Implies for the applicability of our results.

We have already mentioned that it is often possible to obtain superior dynamic

data structures for individual decomposable problems (e.g., Member) by using

specific properties of those problems. Another assumption on which our lower

bounds depend Is that Theorems 4.1 and 4.2 are the strongest possible results of

their kind, because we assume no knowledge about the performance of the original

static algorithm. As we saw at the end of Subsection 3.1 the penalty factors, F(N)
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and G(N), may be greatly reduced (from 1(Ig N) to 0(1) in tile example of Subsection

3.1 If the cost functions of thc static structure are already fast-growing. We now

present some results concerning a slightly different way of lowering the penalty

functions given fast-growing cost functions for the original static structure.

Suppose we are given a static structure for a decomposable searching problem

having preprocessing cost PS(N) and query cost Qs(N). We will make only the usual

assumption about 0 5 -- that it is monotone non-decreasing. We will, however, make

the assumption that Ps(N) not only grows at least linearly with N, but Is actually

0(N2 ). If we apply the 2-binomial (triangular) transform, will obtain a dynamic

structure having cost functions, PD and OD, which satisfy

OD(N) < 20S(N) and

PD(N) = 0(N 5 / 2 ).

The reader is advised to go through the exercise of verifying the latter assertion.

The penalty factor in prel)rocessinrJ is given by

G(N) = PD(N)/PS(N) = 0(N 1 /2),

which is at most a constant factor improvement over the worst-case result given in

Theorem 3.2. We appear to get negligible compensation for the fact that the

preprocessing cost is already much more than linear. If we look a little more

carefully, however, we may notice an interesting phenomenon.

In the trinnrpifor strategy, we maintain two structures, a large one, having

cardinality O(N), and a small one, having cardinality 0(N1 /2). If we break down

PD(N) into the cost of forming all the large structures built during the first N

insertions and the cost of forming all the small structures built during the first N

insertions, we find that the large structures have a total cost of e(N 5 / 2 ), while the

total cest of the small structures is only 0(N2 ). If PS had been linear, then the

costs of the two families of structures would have been equal within a constant

factor, each being 0(N3 1 2 ). The present disparity suggests that it might be better

to merge the smnll structures into the large ones less frequently. And, indeed, if we

adopt the strategy of rebuilding all the elements into a single structure only when
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the size of tile small structure would exceed N2/3, we achieve a dynamic structure

having

QD(N) _< 20D(N) and

PD(N) = O(N7 / 3 ) = O(N 1 / 3 P(N))

(as the reader may again wish to verify), the total preprocessing cost being split

evenly (within a constant factor) between the two families of structures. The

preceding results may be generalized to arbitrary polynomial preprocessing costs

and arbitrary binomial transforms, as shown in the following theorem.

Theorem 4.13: (Shift-of-strategy speed-ups)

Let k be an arbitrary positive integer and let r be a real number 2 0 greater than

1. Suppose that we are given n static structure for a decomposable searching

problem with cost functions satisfying the following criteria:

0S(N) is monotone non-decreasing,
Ps(N) grows at least linearly, and

PS(N) = w(Nr).

Then, a dynamic data structure can be constructed such that

QD(N) _< kQsthN) and
PD(N) O(N PS(N)),

where

R = (r-1)/(rk-1).

Proof:

We maintain a set of structures satisfying the following invarlants:

(1) After any insertion there are at most k static structures.

(2) Let j be a positive integer. After the N-th insertion, the
cardinality, Cj, of tile j-th largest structure (if there are at least

20 The nit-picking reader will delight in noting that it is not quite correct to allow r to be an arbitrary real number.

In order for the desired transform to be implementabte, r must be Turing computable. Even then, if r is very
expensive to compte, the bookkeeping cosls may kill us. Similar considerations apply to the function h in
Theorem 4.11.
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j structures in existence) satisfies
S N( r k ' r j )/(rk' l )

When an element is inserted, we see how many structures already exist. If

there are fewer than k, we simply build the new element into a static structure

of cardinality one. If k structures already exist, we rebuild the smallest

structure to include the new element. We then repeatedly (zero or more

times) merge the smallest two structures until (2) is satisfied. We leave it to

the reader to verify that this strategy achieves the advertised performance.
QED.

In any strategy based on the construction in the previous proof, the total

preprocessing will be divided evenly (tip to constant factors) among k families of

structures. We conjecture that this gives optimal PD within a constant factor

(which may depend on r and k). Needless to say, similar improvements are available,

both in preprocessing time and in query time, for a number of other transformations,

given sufficiently fast-growing cost functions. Only a small fraction of the

possibilities have been explored.

5. Online Transformations

All of the transforms in Section 3 have the property that some Insertions are very

cheap while others are very expensive. For example, in the binary transform the

1 023-rd insertion is much less costly than the 1024-th. While this situation is quite

acceptable In certain applications (such as when the total cost of accessing a

structure throughout an entire algorithm is counted), it is prohibitive in others (such

as online data bases). In this section we will show how the transforms in Section 3

can be modified to amortize the cost of building static structures over the time of

many insertions.

In Section 4, we worked on the principle that any static structure might as well

be formed as soon as all its elements became available, since the cost of building It

would eventually have to be paid anyway. While this Is reasonable If we are
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concerned only with the total cost of all insertions, it is Inappropriate if we wish to

make sure that no individual insertion Is inordinately expensive. Figure 5.1 shows a

strategy which is similar to the binary strategy of Subsection 3.1, except that each

structure of cardinality C Is completed at the end of the C-th insertion that all Its

elements are available, rather than at the end of the first such Insertion. A

structure, s, is said to be pending during the N-th insertion if the all elements of s

become available at or before the beginning of the N-th insertion and s is completed

during the N-tli insertion or later. (The x's in Figure 5.1 denote the structures that

are pending during the eighth insertion). A structure of cardinality C will therefore

be pending during exactly C insertions.

20jg
19
17
16
15
14
13 x
12
11
10
9
8 X
7
6
5
4
3
2

Figure 5.1. The online binary transform.

To limit the work done in any insertion step, we require that 1/C of the work

required to build any structure of size C be performed during each of the C steps In

which that structure Is pending.2 1 We call the resulting transformation the online

21The exact means by which this is insured are left unspecified. We may modify the static algorithn to include
appropriate breakpoints (generally an easier task than totally reworking the algorithm into a dynamic algorithm by
ad hoc methods), or we could assume that we can determine the required computation time in advance (at
negligible cost) and set a hardware interrupt. For our present purposes, we will assume that the ability to partition
the compute time of a call to Insert is available by magic. It should also be noted that the partitioning of the work
into equal parts will not be exact in in practice; this will lead to slightly greater insertion times than those we are
about to advertise.
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binary transformation. Analysis of this transform's performance yields the following

theorem.

Theorem 5.1: (The on-line binary transformation)

Suppose we are given a static structure, S, for a decomposable problem such

that

(1) Qs(N) is monotone non-decreasing,

F (2) A structure of cardinality N may be built by N calls, each of cost
IS(N) (recall that Is(N) is defined as Ps(/N),

(3) IS(N) is monotone non-decreasing,

(4) The space used at any point during the formation of a static

structure is at most Ss(N), and

(5) Ss(N) grows at least linearly.

Then, there exists a dynamic structure, D, such that

0O(N) :5 2LIn(N+1)JQs(N),
ID(N) < flig NIIs(N), and

SD(N) < 3Ss(N)

(recall that ID(N) is the worst-case time to insert the N-th element In a

dynamic structure).

Proof.

By assumption (2), application of the online binary transform is well-defined.

We will now show that the resulting dynamic algorithm has the stated

performance. We first note that all structures which are either active

(completed but not yet discarded) after the N-th insertion or pending during

the N-th insertion have cardinalitles which are exact powers of two end which

are S N. Moreover, there are never more than two active structures of any

given cardinality. This and assumption (1) justify the claim about OD" Similarly,

assumption (3) and the fact that there is never more than one pending

structure of any cardinality together justify the claim about 1a. Finally, we

note that the sum of the cardinalities of all structures active and pending after

the N-th insertion is no more than 3N (N for the active structures and no more

.. .Y i .....- ... ,i
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than 2N for the pending structures). Together with assumptions (4) and (5),

this fact justifies the claim about S D- OED.

To illustrate the application of the online binary transformation, we will consider

the problem of d-dimensional maxima searching. A vector is said to be maximal with

respect to a set of vectors if no vector in the set is greater than the given vector

in all coordinates. Preparata (1978] has given a data structure SMS for

d-dimensional maxima searching with performances

PSMS(N) = O(N gd -2 N),
SSMS(N) = O(N lod ' 2 N), and
QSMS(N) = O(Igd - 2 N),

for any dZ3. Applying the online binary transform to this structure yields the

following.

New Data Structure 5: (Dynamic Maxima Searching)

For any fixed d Z 3 there exists a dynamic data structure DMS for

d-dimensional maxima searching with performance

IDMS(N) 0 (1 d ' 1 N),

ODMS(N) 0 ( 9 d l N), and
SDMS(N) = O(N lgd 2 N).

This structure has the same performance as Lueker's (1979], but is substantially

easier to code and prove correct; his structure, however, also supports deletions.

(The two structures were discovered independently.)

The other transforms we have studied may also be modified to give online

versions, as shown by the examples in Figure 5.2. The online triangular transform,

shown In Figure 5.2(a), gives the performance
ID(N) _< (2N) 1 / 2 1S ( N ) ,

OD(N) < 30S(N), and

SD(N) : 2SS(N).

Similarly, the online dual triangular transform, shown in Figure 5.2(b), achieves
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21 21

15 15

10 10

6 6

33T

1'_

Figure 5.2. Online triangular transforms.

ID(N) -. 21S(N).,1

QD(N) < 3(2N) 1 / 2 Qs (N), and
SD(N) - SS(N).

Determination of good lower bounds for the penalty factors associated with online

transformations remains an open problem.

6. Deletion

So far in this paper we have considered dynamic data structures that support

only insertions and queries. In this section we will present two results dealing with

data structures that support deletions and their realization by decomposable

transforms. In Subsection 6.1 we present a negative result that says that, in

general, it is impossible to achieve by a transform a data structure that efficiently

supports deletions. In Subsection 6.2 we will examine a transformation that

efficiently achieves deletion, but is applicable only to a subset of the decomposable

searching problems.
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6.1. A Lower Bound

In this subsection we will study a lower bound on the efficiency of performing

deletion in a structure achieved by a decomposable transformation. As with all

lower bound proofs, it is Important that we accurately define our model of

computation, which is very similar to that used in Section 4. We assume that there

is a static structure S with operations Build and Query, which have performances PS

and QS , respectively. The function PS grows at least linearly, and QS is positive

and monotone nondecreasing. There is no way to answer a query other than by

using the Query subroutine (on a structure built by Build) and the 03 operator. The

only costs that we will count are those of PS, QS, and a constant cost for computing

0.

To state the lower bound precisely, we need some definitions. For a dynamic

structure with deletions (which we call DD) we will define the functions I)o(N),

DD(N), and QDD(N) for the insertion, deletion and query costs, respectively. To

strengthen our result, we let these costs denote not the worst-case times, but

rather the average cost (over a distribution that we will make precise in the proof of

the theorem). We are now ready to state and prove the primary theorem of this

subsection.

Theorem 6.1: (Expense of deletion)

For any dynamic structure with deletions (which we call DO) obtained by a

transformation applicable to all decomposable searching problems, there exists

a sequence of insertions, deletions and queries for which

[ DO(N)] - [ID(N) + DDD(N) + QD(N)] a n(N).

Note that this implies that at least one of the insertion, deletion and query

costs requires at least 11(N 1 / 2 ) time.

Proof:

We will prove this theorem by considering a "steady state" In which there is a

structure of size N, and a sufficiently long string of repeated query, delete,

and Insert operations is performed. After M repetitions of these operations,
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the structure will still be of size N, and a total of M queries will have been

performed. Each query that is performed must examine some collection of

static structures whose total size is at least N (so that each element of the

set is represented in the query); assume that C*(N) such structures are

examined on the average. We therefore know that at least half the queries

examine no more than 2C*(N) static structures each (if more were examined,

then the average would be too high), and in these cases the largest structure

examined must contain at least N/(2C*(N)) elements.

Consider now an adversary who causes each deletion In the sequence to be

deleted from the largest existing static structure -- because of our model of

computation, this structure must now be discarded. For sufficiently long
sequences of operations, static structures must be created as often as they

are deleted. The costs of building the static structure must therefore be paid

In insertion, deletion, and query costs, yielding

ID)o(N) + D*D(N) + OD0)(N) >_ (1/2) PS(N/2C*(N)).

(The right hand side is from the fact that at least one-half of the queries

access a structure of size N/2C*(N), and the adversary always deletes that

structure.) We also know that

O Q)(N) a z(C*(N)),

because each structure queried costs at least some constant. Multiplying

these two inequalities yields

[O(D(N)] ' [l )o(N) + D*D(N) + OQD(N) ]

= (C*(N) " Ps(N/2C*(N)))
f?, (Ps(N))

n (N).

The last two Inequalities both follow from the fact that PS grows at least

linearly. QED.

Maurer and Ottmann [1979] describe a static-to-dynamic transformation with

deletion that comes close to achieving this lower bound by always keeping

approximately N1 2  static structures, each of size approximately N 1 '2 .

Fortunately, however, additional information can often be used to achieve more rapid

deletion outside the model for which this lower bound holds. (Any such transform,
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however, is not applicable to all decomposable searching problems.)

6.2. A Fast Special Case

Theorem 6.1 shows that any search for an efficient deletion transformation for all

decomposable searching problems must be in vain. In this section we will see a

transformation that donts in fact efficiently support deletions as well as insertions,

but is not applicable to all decomposable searching problems. We will investigate

this transform by first studying a particular example, and then turn to the general

case.

The particular problem that we will study is that of counting the number of times a

given element occurs in a multiset. A suitable static structure for this problem is the

sorted array, which we discussed in Subsection 3.1; it has performances

PSA(N) = O(N Ig N),
SSA(N) = O(N), and

QSA(N) = O(Ig N).

We saw in that subsection that this structure can be transformed to yield the

binomial list data structure that efficiently supports both insertions and member

queries. It is a trivial modification to have it support count queries as well; the [

operator Is now plus rather than or.

Binomial lists can be modified to support deletion by keeping two binomial lists at

all times, which we will call the real and the ghost structures. Each time an element

is Inserted, it is inserted into the real structure. When an element is deleted, we

insert it into the ghost structure. To count the number of times an element occurs in

the set, we count the number of times it occurs in the real structure and subtract

from that the number of times it occurs in the ghost structure. We maintain the

further invariant that the ghost structure always holds less than half as many

elements as the real structure; when deletion of an element violates this invariant

we destroy the ghost structure, unbuild the set of elements In the real structure

and subtract all deleted elements from it, and finally rebuild that set into a new real

structure (giving an empty ghost structure).
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We must now analyze the performance of binomial lists with deletions. The cost

of inserting an element and of performing a count search remain the same; they are

respectively O(Ig N) and 0(1g 2 N). The "immediate" cost of deleting an element is

O(g N) (for performing the insertion into the ghost structure); we must also count,

however, the cost of rebuilding the structure. The cost of rebuilding an

M/2-element real structure is incurred only after M/2 elements have been deleted;

since the total cost is O(M Ig M). we can assign each element a share proportional

to Ig M. Thus the cost of deletion in an N-element set can be amortized to O(Ig N).

The strategy of using real and ghost structures can be generalized to give a

dynamic structure supporting deletions for any decomposable searching problem

whose 0 operator has an inverse. The most common case is when 0 is plus, for

which - 1 is minus. If 0 is and or or, then one can often transform the problem to

Involve plus instead (for instance, we could transform member queries to count

queries, whose 0 operator is invertible). If 0 is multiset union, then this scheme

works only when the size of the answer set for the ghost structure Is much smaller

than the size of the total answer set (and this is often not the case). Finally, if 0 is

min or max, this scheme is usually impossible to apply.

To describe the strategy more precisely we will need some notation to describe

the efficiency of structures with deletions. If DD is a dynamic structure supporting

deletions, we let PDD(MN) denote the total insertion cost involved in a sequence of

N insertions and M deletions in on initially empty structure. The function QDD(M,N)

denotes the cost of answering a query in a structure built by N insertions and M

deletions. Finally, DDo(M,N) denotes the total time spent in processing deletions in

a series of N insertions and M deletions, and SDD(M,N) denotes the maximum space

required by the structure during the sequence. With this background we can

describe the transformation supporting deletions precisely In the following theorem.

Theorem 8.2: (Transformations supporting deletions)

Assume that there exists an admissible (F(N), G(N)) transformation. Then,
given any static structure S for a decomposable searching problem P such that
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the inverse of the 0 operator for P is computable in constant time, It Is

possible to achieve a new structure DO with performances

SDo(M,N) _ SS(2(N-M)) + Ss(N-M),
PDD(M,N) < G(N) " PS(,

ODo(M,N) < F(2(N-M)) ' QS(2(N-M)) + F(N-M) * Qs(N-M), and
DDD(MN) ! G(M) " PS(M) + Ps(UM).

We assume here that Qs is monotone nondecreasing and that both PS and SS
grow at least linearly.

Proof:

The DO structure maintains two dynamic structures (each achieved by applying

the admissible (F(N),G(N)) transform to S): the real structure and the ghost

structure. Both structures are initially empty. To insert a new element into DD,

insert it into the real structure. To answer a query, answer it on the real
structure and subtract from that the answer on the ghost structure (using

-1 ). To delete an element, insert it into the ghost structure. If the ghost

structure ever becomes half the size of the real structure, rebuild the real

structure with only undeleted elements, and discard the current ghost

structure.

The storage requirements of DO follow immediately from the superlinear growth

of S S . If a total of N insertions and M deletions have been performed, then at

most N-M elements are "really" stored in the structure. The ghost structure

can therefore contain at most N-M elements, and the real structure contains at

most twice that number. The time spent on insertion is straightforward, and so

Is the query time. The time spent on deletion is at most that for Inserting M

elements into the ghost structure and then rebuilding the real structure; this

latter action is never carried out on more than 2M elements. These facts

together establish the theorem. QED.

There are two Important things to note about the transformation of Theorem 6.2.

The first is that it Is not online in the sense of Section 5; as It stands, the expense

of rebuilding the real structure and discarding the ghost structure must occasionally

be paid In a single block of time. The second interesting thing to note is the fact

that there is nothing magic about insisting that the ghost structure be one-half the

• 2 : --. . : - " " ... .. .. . . ... . ... .
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size of the real structure: we could just as well use any constant A In the range

(0,1). For small A, the query time decreases and the storage utilization Is higher; for

large A, the deletion time decreases.

As an application of this transformation, we will consider the problem of Empirical

Cumulative Distribution Function (ECDF) searching in a set of N d-dimensional

vectors. One vector is said to dominate another if it is greater than It in all

components; an ECDF cjuery asks for tile number of vectors a given vector

dominates. Bentley and Shamos [1977] describe a data structure for d-dimensional

ECDF searching (for d>_2) with performances

PECDF(N) = O(N Ig N),

SECDF(N) = O(N I1d
'l N), and

QECDF(N) = O(g d N).

We can apply the binary transform of Section 3.1 and the transform of Theorem 8.2

to their structure to achieve the following.

New Data Structure 6: (Dynamic ECDF Searching)

It is possible to achieve a data structure for dynamic ECDF searching In which

performing a sequence of N insertions and deletions requires O(N Igd N) time.

When containing N elements, the structure requires O(N Igd-l N) space, and an

ECDF query can be answered in O(Ig d + 1 N) time.

Lueker [1979] In ter used a different transformation on decomposable searching

problems to achieve an (online) structure with performance Identical to this, but with

a logarithmic factor removed from the query time; his structure is more difficult to

code and to pro.ve correct, however.

7. Conclusions

We will now briefly review the contributions of this paper. The subject

throughout has been general methods for converting static data structures to

dynamic data structures. In Section 3 we saw three distinct classes of

transformations, each based on a combinatorial representation of the Integers. In

Section 4 we saw that many of those transformations are optimal, in a very strong
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sense. In Section 5 we considered structures In which each Insertion must be

handled very quickly; this is important in "online" applications. Our study of dynamic

structures up to this point concentrated on structures that supported only insertions

and queries; in Section 6 we investigated structures that also support deletions.

We saw that although it is Impossible to achieve efficient deletions in the general

case, they can be achieved for an important subclass of the decomposable

searching problems.

The contributions of this paper can be classified on three distinct levels. On the

first level are the new data structures that we have seen. Each one Is currently

the best known structure for its task (with the exception of New Data Structure 6),

and each was discovered by conscious application of the transforms described in

this paper. On a second level are the transformations themselves; they are very

interesting from a combinatorial viewpoint, and provide a useful addition to the

algorithm designer's tool bag. On the third and final level is the new kind of result

represented by the transformations: they are not just a single solution to a single

problem, but rather a set of solutions to a broad class of problems.
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1. A List of Decomposable Searching Problems

Throughout the body of this paper we have examined a number of operations on

decomposable searching problems. In this appendix we will list some (twenty-three)

searching problems that have the property of decomposability. For each problem we

will note its 0 operator In square brackets.

The most common kind of searching problems are those defined on totally-ordered

sets. We already saw that Member searching (which asks "is x an element of F?")

is decomposable with 0 operator V. Other examples are Successor (what is the

least element in F greater than x?) (min), Predecessor [max], Rank (how many

elements in F are less than x?) [+], and Count (how many elements in multiset F

have value x?) [+]. Two queries on ordered sets that have no query element are

the priority queue operations Min (min] and Max (max]. These problems, their

applications, and data structures for their solutions are discussed In depth by Knuth

(1973].

Many of the problems that arise in database applications are decomposable. In

this context, the set of elements is usually a file of records, each of which contains

certain keys. An Exact Match query calls for a list of all records that have all keys

equal to specified values [U]. A Partial Match query asks for all records that match

on some subset of the keys (U]. Range queries ask for all records that have each

key in a specified range of values [U]. Intersection queries specify a subset of the

key space and ask for a list of all records in that subset (thus asking for the
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intersection of tile query space and the record set) [U]. Finally, Best Match queries

specify an "ideal" record and a distance function (often the Hamming distance), and

ask for the record in the set closest to the ideal [mini. These queries and data

structures for answering them are discussed by Rivest [1976].

We saw In the body of the paper two decomposable searching problems that

arise in statistics. Both of the problems are defined in terms of vectors domination

(one vector is said to dominate another if it is greater in all coordinates). A Maxima

query asks whether the query vector is. dominated by any In the set [V]. The

Empirical Cumulative Distribution Function (ECDF) query asks how many vectors a

given vector dominates [+].

Examples of decomposable searching problems abound in computational geometry.

Many qu'.ries fire asked of sets of points in the plane or Euclidean k-space,

including Aeare3t. Neighbor (which point in the set is nearest the query point?) [min],

Furthest Neighbor [max], and Near Neighbor (list all points within distance d of the

query point) [U] queries. Other queries deal with more complicated objects. For

example, we might wish to know whether a given point is in the intersection of a set

of half-planes (this problem arises in linear programming); Feasible Region queries

are decomposable with the A operator. Other queries include Rectangle Intersection

(what rectangles in the set does this rectangle intersect?) [U] and Circle

Intersection [U]. These queries and many otlers have been discussed In detail by

Shamos [1978]. Dobkin and Lipton (1976] investigate a number of decomposable

searching problems in multidimensional space; these include such queries as "is this

point on any of the lines" Iv] and "is this point on any of the hyperplanes" IV].

Many of the other problems that we have already mentioned can be cast In

geometric terms; these include ECDF, Maxima and Range searching.

Convex Hull searching is a very interesting problem from the viewpoint of

decomposability. In its simplest form--"Is point x within the convex hull of point set

F?'--it is simple to prove that it is not decomposable, since whenever F contains at

least two points we can partition F and specify x so that x Is not In the hull of

_iI1
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either part but either is or is not in the hull of the union. If we ask instead the

query "what does the hull of the set look like from here?" (the answer being either

an assertion that the query point is within tile hull or a pair of angles giving the

extremal points of the hull as "viewed" from the query point), tile problem is now

decomposable. The transforms described in this paper are therefore applicable to

any data structure for Convex Hull searching, provided that that structure can be

cheaply modified to answer the more complicated query. While this result is not of

particular interest in itself (since it is easy to develop a fast ad hoc algorithm for

dynamic Convex Hull searching), it indicates a possibly fruitful technique for

extending the domain of applicability of the transforms, namely tile identification of

any searching problem P such that (1) P may be made decomposable by having the

query provide some extra information and (2) known static algorithms for P can be

altered to yield that extra information at low cost. The Identification of other such

"pseudo-decomposable" problems (and other decomposable problems In general)

remains a open problem.

- .f~
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